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1. INTRODUCTION

Letf(x) be a continuous real-valued function on the interval D := [A, B] n
(-OJ, OJ), in symbols:fE C[A,B]. We use the following notation:

,1~f(x) = f(x +h) - 2f(x) + f(x - h)

IIfil = sup If(x)l,
xeD

LiP2 a = {f E C[A, B]; wi!; b) = O(t5lJ:), t5~ O+},

where D h := [A + h,B - h] n (-OJ, OJ).
Let us consider the operators

LIl(f; x) =( Wen, x, u)f(u) du (n;) 1),

where Wen, x, u);) 0 is a function on D. We say that LIl(f; x) is an
exponential-type operator if

(w(n,X,U)dU= 1

and

a nax Wen, x, u) = ~(x) Wen, x, u)(u - x),
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where ¢(x) is a polynomial of degree ~2, ¢(x) >°on (A, B) and ¢(A) = 0,
¢(B) = 0 if A, B =1= ± 00. Such exponential-type operators were first
introduced by May (cf. [9]).

Ln(f; x) is a positive operator since W(n, x, u) ~ 0. By (1) and (2) we
have

Bt W(n, x, u)u du = x

Hence Ln(f; x) preserves linear functions.
Let us write

for x ED.

B

Am(n, x) = nmLW(n, x, u)(u _x)m duo

Using (2), we have (see [9])

and by simple calculations,

Ao(n, x) = 1, A 1(n, x) = 0,

A 2(n, x) = n¢(x), A 3(n, x) = n¢(x) ¢'(x), (3)

Ain, x) = 3n2¢(x)2 +n¢(x)[f(x)2 +¢(x) r(x)].

Many authors have considered global approximation theorems for specific
exponential-type operators (cf. [3,6], etc.). In this paper we try to generalize
these theorems using an elementary method. Under some conditions upon
¢(x) we prove a theorem for Ln(f; x) which includes results for Bernstein
polynomials and for Gauss-Weierstrass, Szasz-Mirakjan, Baskakov and
other operators.

We impose on ¢(x) the condition that it is a polynomial of degree ~2

without a double zero and satisfies

n
2

I! [~'(X) ]!:= ¢(X)2 L-n-- u +x (U-X)3 W(n,x,u)du~M, (4)

where a = min(x, x + f(x)jn) and P= max(x, x + f(x)jn). Throughout the
paper let M be an absolute constant independent of n and X. Then we have
the following theorem.
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THEOREM 1. Let ~(x) satisfy the above condition. Thenfor 0 <a < 2 the
following statements are equivalent:

(I) f E LiP2 a,

(II) ILif; x) - f(x)1 ~ M [~~)r/2

We denote this result by the notation

(n ~ 1, x ED).

G.App.[L n ] = [{f I f E Lip2 a}, n- al2, ~(x), D].

The method for proving the direct part (I) => (II) of this theorem is the
standard procedure using a Jackson-type inequality, the Steklov means and
appropriate estimates of the moments of the operators. For proving the
inverve part (II) => (I) we use the elementary method which was introduced
by Berens and Lorentz [5] and was further developed in [2] and [4]. Since
the elementary method fails for the saturation case a = 2 in the inverse part,
we only consider the nonoptimal case 0 <a < 2.

2. PROOF OF THE DIRECT PART

In this section we prove the direct part of Theorem 1.
Let us introduce F(x) by the continuous extension of f(x) onto (-00,00)

F(x) =j(x),

= f(2A. - x),

A ~x~B,

2A. -B ~x~A,

where·F(x) is 2(B -A) periodic when A and B are finite (see [10, p. 122)).
Then for the Steklov means

1 h/2 h/2

fh(X) = JiTf f F(x + s + t) ds dt
-h/2 -h/2

we have the following estimates (cf. [5, 10))

(h >0)

(5)

Now let us write

e2 [A, B] = {f E C[A, B]; f" E C[A, B]},

then we have the following inequality.
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PROPOSITION (Jackson-type inequality). For g E C2 [A, B] we have

35

ILn(g; x) - g(x)1 ~ M II g"l1 ~(x)
n

Proof In view of

(n ~ 1,xE D).

/ s
get) - g(x) = (t - x) g'(x) +JJ g"(u) du ds,

x x

there follows

Ln(g; x) - g(x) = Ln(g(t) - g(x); x)

= Ln ((t - x) g'(x) +{( g"(u) du dS;X)

=Ln ({( g"(U) du ds;x ).

From the positivity of Ln(f; x) we get

ILn(g; x) - g(x)1 ~ L n ( I{f g"(u) du ds I; x)

~Ln (lIg"II{( dUdS;X) =lIg"IILn (t~X)2 ;x).

Hence the proof is completed by (3).
Now we verify the direct part (I) => (II). Since I E erA, B] is approx

imated by {ekX
} and Ln(ekU

; x) =ekx holds for x =A, B (A, B =1= ± co) by the
recursion relation of Am(n,x), we have Ln(f;x)=/(x) (x=A,B) easily.
Therefore we consider the proof for x E (A, B). Since Ln(f; x) is a bounded
operator, we have for h ~ V~(x) by the Proposition

ILnCI; x) - l(x)1 ~ ILn(f - Ih; x)1 + ILnU;'; x) - Ih(X)1

+ I/ix) - l(x)1

~M III - Ihll +M 11/1:11 ?(x) + IIlh - III.
n

Using (5), we obtain
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(6)

By the assumptionf E Lip2 a, setting h = v~(x)/n, we have

Remark 1. Obviously, the direct part holds without condition (4).

3. PROOF OF THE INVERSE PART

In order to prove the inverse part, by the idea of Berens and Lorentz [5 l,
it is sufficient to show that for f E CIA, B J and 0 <a < 2

Wif;h)~M[Oa+ (~)2 W2(f;O)],

where 0 <h <min«B -A)/4, 1) and 0 <0 <min(supx V~(x), 1). To obtain
(6), we need the following two lemmas.

LEMMA 1. Let ~(x) satisfy condition (4). For g E e2 [A, B] there holds

(n ~ 1, x E (A, B)).

Proof By Taylor expansion of g, we have

d
2 B[Ei ]dx2 Ln(g; x) = { 8x2 W(n, x, u) g(u) du

=([::2 w(n,x,u)]

X {g(x) + (u -x) g'(x) + (u _X)2 g"(e)} du

= g(x) s: [::2 Wen, x, u) ] du

+ g'(x) s: [::2 w(n,x,u)] (u-x)du

+( [::2 Wen, x, u) ] (u - X)2 g"@du.

Since from (3)

B [ 8
2

]fA 8x2 W(n, x, u) (u - X)i du = 0 for i = 0, 1,
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we have

and hence

Thus it is sufficient to show that

J:=r1::2 W(n,x,u) I(u-x)2du~M.
In view of (3) and

37

(7)

we have

82
n [ ¢'(X)

ox2 Wen, x, u) = ¢(x) - ¢(x) (u - x)

n 2 J+ ~(x) (u - x) - 1 wen, x, u),

fB n I f(x) n 2 I
J = A ¢(x) - ~(x) (u - x) + ~(x) (u - x) - 1

X (u - X)2 wen, x, u) du

n fB I f (x) n 21
~ ¢(x) A - ~(x) (u - x) + ~(x) (u - x)

X (u _X)2 wen, x, u) du + 1.

(8)

Since

¢'(x) n 2 n ( ¢'(X))---(u-x)+-(u-x) =--(u-x) u-x---,
~(x) ¢(x) ¢(x) n

taking a = min(x, x + ~'(x)/n) and p= max(x, x + f(x)/n), and by (3) we
have

n f" [ ~' (x) 3 n 4 ]
J ~ ~(X) A - ~(X) (u - x) + ~(X) (u - x) Wen, x, u) du

n fiJ [~'(X) 3 n 4]+ ~(x)" ~(x) (u - x) - ~(x) (u - x) wen, x, u) du

n ~ [ ~' (x) 3 n 4 ]+ ~(X»)iJ - ~(x) (u - x) + ~(x) (u - x) Wen, x, u) du + 1
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n2
B nf(x) B

= ~(X)2 t Wen, x, u)(u - X)4 du - ~(X)2 t Wen, x, u)(u - X)3 du

2n
2

(j [f (x) 3 4 ]+ ~(X)2 L -n- (u - X) - (u - X) Wen, X, u) du + 1

= 4 + rex) +2/.
n

Hence by (4) we obtain (7). This completes the proof.

Remark 2. By (3) we have the following estimation

n2
{j ~'(X)2 2

1<' ~(X)2 L----;;r(u-x) W(n,x,u)du

n2
{j

+ ~(X)2 L(u - X)4 Wen, x, u) du

f(X)2 B 2
<. ¢(X)2 LWen, X, u)(u - X) du

n2 B

+ ¢(X)2 t Wen, X, u)(u - X)4 du

2f(x)2 ~"(X)

= n~(x) + 3 +-n- .

Thus (4) holds for those X such that (see also Section 4).

[~/(X)]2 <. Mn~(x). (9)

LEMMA 2. Let ~(x) satisfy condition (4). Then we have for X E Dh (D h =
[A +h,B-h]n(-oo, (0»

where

and

h/2 h/2 ds dt Mh2

f f <.,
-h/2 -h/2 ~(x + S+ t) m(x, h)

m(x, h) = max{~(x - h), ~(x), ~(x + h)}

0< h < min{(B -A)/4, I}.

(10)

Proof. Ismail and May [8] have shown that the family of exponential
type operators essentially consists of 6 different types of operators according
to ~(x) E p, x, x(1 - x), x(1 + x), xl, x 2 + I}. In view of the conditions on
¢(x), we only prove (10) for the five normalized cases {~(x)} = p, x,
x(1 - x), x(1 + x), x 2 + I}. The case ~(x) = 1 is trivial. For ~(x) = x(1 - x)
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see [4]. For ¢(x)=x, x(1 +x) see [2,p.138]. Thus there remains the case
¢(x) = x 2+ 1.

In this case we have for x E [0, h]

.h/2 h/2 ds dt Mh 2 Mh 2

J f ~ h2 ~ 2 = .
-h/2 -h/2 ¢(x+s+t) (x+h) + 1 m(x,h)

Since 4hx ~ M(x - h)2 +M for M ~ 5 and 0 <h < 1, we obtain the
following estimate for x E [h, 00)

h/2 h/2 ds dt

Lh/2 Lh/2 ¢(x + S + t)

h
2

[ 4hx] h
2

(1 +M) h
2

~ = 1 + ~ -'-------'--
""¢(x-h) (X-h)2+ 1 (X+h)2+ 1 '<::: m(x, h)

Analogously we get the inequality (10) for x E (-00,0]. Hence the proof of
Lemma 2 is complete.

Remark 3. Since the assertion of Lemma 2 does not hold for ¢(x) = x2,
we exclude ¢(x) = x 2, as the elementary method of proof fails just in this
case (cf. [1]).

And now, we prove the inverse part (II) => (I). By the assumption (II) we
have for x E D h

IAd(x)1 = If(x +h) - 2f(x) + f(x - h)1

~ If(x +h) - Ln(f; x + h)1 + 2If(x) - Ln(f; x)1

+ If(x - h) - Ln(f; x - h)1

+ ILn(f; x +h) - 2Ln(f; x) +Ln(f; x - h)1

~ M 1[¢(x: h)r2

+ 2 [¢~X)r2

+ [¢(x: h) J
al2

l

+ 1(:J~:2 [Ln(f;x+s+t)]"dsdt I.
Thus we have to estimate for 0 < ~ < min(supx V¢(x), 1)

Using (8), we have
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n [1f(X)1 fB
~ ¢(x) Ilf-fo5l; ¢(X) A W(n,x,u)lu-xldu

+ ¢~)rW(n, X, U)(U - X)2 du +rW(n, X, U) dul
and by (3)

[[Lif - fo5; x)]"1

~ ¢lx) Ilf-fo5llll~(~;I(w(n,x,u)[U-X
,
du+21·

To estimate (12), we prove the following inequality

If(x)j B

¢(x) t W(n,x,u)lu-xldu~M.

(12)

(13)

When ¢(x) is constant, (13) is evident. Next we consider the case that ¢(x)
has zero points. From Ln((t - x); x) = 0 we have

Bf W(n,x,u)lu-xldu
A

= rW(n, x, u)(x - u) du +[ W(n, x, u)(u - x) du
A x

=2rW(n,x,u)(x-u)du~2(x-A),
A

and similarly

Bf W(n,x,u)lu-xldu~2(B-x).
A

Since ~ and B are zero points of ¢(x), we obtain

If(x)1 B
¢(x) LW(n, x, u) lu - xl du

1¢'(x)1 .
~ ¢(x) mm(2(x -A), 2(B -x» ~M.

For the remaining case that a quadratic polynomial ¢(x) has no zero points,
we have (cf. Section 4)
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I:(~;I( W(n, x, u) lu - xl du

1~'(x)1 \ B 11/ 2

~ ~(X) It W(n, X, U)(U - X)2 du \

= 1¢,(x)1 \ ~(X) 11/2 = 1¢,(x)1 ~ M.
~(X) I n \ Jn~(x)

Hence from (13) and (5) we have

41

By the boundedness of Ln(f; x) and Lemma 1, we obtain the estimation of
the second term of (11)

Combining (14) and (15), we have

(15)

I[Ln(f; x)]"1 ~ Mw 2(f; £5) [~~) + ;2]-
Then, by m(x, h) = max{~(x - h), ~(x), ~(x + h)} and Lemma 2, we obtain
forxED h

l [~(X+h)]a/2 [~(X)]a:/2 [~(X-h)]a/2l
lL1hf(x)I~M +2 - +

n n n

[
h/2 h/2 ds dt ( h ) 2]+Mw 2(f; £5) n + -Lh/J-h/2 ~(x+s+t) £5

\ [m(x, h) ]0:/2 [nh
2

( h ) 2] I
~ M I n + w 2(f; £5) m(x, h) + ~ \.

Choosing n such that

we have
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Hence we obtain (6) and by induction

which implies f E Lip2 a. This completes the proof of the inverse part.

4. ApPLICATIONS

We apply Theorem 1 to the five normalized types of operators for
{~(x)} = {I, x, x(l - x), x(l + x), x2 + 1}. Especially for these ~(x) we
consider condition (4). Since ~(x) = 1 and x2 + 1 satisfy (9) for all xED,
condition (4) holds for ~(x) = 1 and x 2 + 1 by Remark 2. For the remaining
cases ~(x)=x, x(l-x), x(l +x) condition (9) holds whenever~(x)~aln

for some (small) a > O. Hence condition (4) needs only to be tested for three
cases of ~(x) in a small neighborhood of the zero points of ~(x).

In these three cases the operator Ln(f; x) may be represented as a sum

(n ~ 1, D = [A, B] n (-00,00 )).

Then condition (4) becomes

2(k )3( k-l) -2Ik:=n n- x x--
n
- Pk.n(xH(x) ~M

for x ~ kin ~ x + lin and needs only to be tested for k = 0, 1 (concerning a
neighborhood of x = 1 in the case ~(x) = x( 1 - x), we may use analogous
arguments). We have for 0 ~ x ~ lin

Thus (4) follows from

(16)

Therefore instead of (4) we shall check (16) for the three cases ~(x) = x,
x( 1 - x), x( 1 + x).
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4.1. Gauss-Weierstrass Operators

We define the Gauss-Weierstrass operator Gn(f; x) as follows.
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rn 00 1 n(u-x)z/
Gn(f;x)=\/z;rLooexp - 2 \f(u)dU

Then the kernel of this operator is

(x E (-00, 00».

rn \ n(u-x)z/
Wen, x, u) = \/z;rexp /- 2 \.

From Remark 2 and the above we have the corresponding theorem for
Gn(f; x).

THEOREM 2.

4.2. Szdsz-Mirakjan Operators

The Szasz-Mirakjan operator S n(f; x) is defined as follows.

00 (nx)k (k)
Sn(f;x)=e- nx L -,-f -

k=O k. n

-nx 00 (nxt ( k)W(n,x,u)=e L -k,-J U--.
k=O' n

(x E [0, 00»,

THEOREM 3. (Becker [3 D.

G.App,[Sn] = [{f I f E Lipz a}, n-a/z, x, [0, 00 )].

Proof In view of the above we only test that ¢(x) = x and Pk.n(x) =
(nx)klk! satisfy (16) for °~ x ~ lin. From Po.n(x) = 1 and PI.n(X) = nx, we
obtain inequality (16) immediately.

4.3. Bernstein Polynomials.

The Bernstein polynomials are defined by

(x E [0, 1]),

Then we have the following theorem.
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THEOREM 4. (Berens and Lorentz [5]).

G.App.[Bnl= [{flfELip2a},n-a12,x(l-x). [0, I]].

Proof. Since ?(x)=x(l-x) and Pk.n(X) = (~)xk(l-xY-\ we have

Po.ix) = (I - xY,

and therefore

x () ( n- 3
n?2(x)PI,nX = I-x) .

Thus (16) holds clearly for 0 ~ x ~ lin. This completes the proof.

4.4. Baskakov Operators

The Baskakov operator Vn(f; x) is defined as follows.

Vn(f; x) = k~O (n + ~ - I) xk(1 + x)-n-k f( ~ ) (x E [0,(0»,

W(n,x,u)= ~o (n+~-I)~(1+x)-n-kJ (u- ~).

Similarly, we obtain the corresponding theorem for Vn(f; x).

THEOREM 5 (Becker [3]).

G.APP'[Vn] = [{f I f E Lip2 a}, n-a/2, x(1 +x), [0, 00 )].

Proof. For ?(x) = x(1 +x) and pk.ix ) = (n+Z-l) xk(1 +x)-n-k we
have

and thus

Therefore (16) is valid for 0 ~ x ~ lin.
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4.5. Operators by Ismail and May [8]

The operator Tn(f; x) introduced by Ismail and May is

2n - zn 00

Tn(f; x) = nF(n) (1 +XZ)-.vztoo exp(nu arctan x)

X I~(; +i n; )!Zf(U)dU,

2n- zn
Wen, x, u) = nF(n) (1 +XZ)-.vzexp(nu arctan x)

45

(x E (-00, 00».

Since ~(x) = X
Z+ 1 satisfies (9) in Remark 2, we have the following theorem

for Tn(f; x).

THEOREM 6.

G.App. [Tn] = [{f I f E Lipz a}, n-a/Z
, XZ+ 1, (-00,00 )].
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